Module description: Physics 3: Atmospheric Physics and Applied Meteorology

Module Code LBAAVP.PHYMET-EN 19HS ECTS Credits 4 Language of Instruction/Examination English Organizational Unit ZAV Module Coordinator Julien Anet Legal Framework The module description is part of the legal basis in addition to the general academic regulations: Its binding, During the first week of the semester a written and communicated supplement can specify the module description in more detail. Module Characteristic Type 3C** 2 lecture lessons per semester week each yearly starting-class + 2 lab lessons per semester week and class Module Description Students acquire an overview of applied atmospheric physics, with an explicit focus on meteorology. The aim of the course is to apply the basic laws of physics to meteorological problems and phenomena. Students will also be able to generate their own well-founded weather forecast. Module Content Students acquire an overview of applied atmospheric physics, with an explicit focus on meteorology. The aim of the course is to apply the basic laws of physics to meteorological problems and phenomena. Students will also be able to generate their own well-founded weather observation with satellites & radar Module Content Students acquire an overview of applied atmosphere Electromagnetics: Radiation budget, absorption & reflexion Weather observation with satellites & radar Thermodynamics 2: Temperature gradient, Skew-T-log	Weteorology	
Language of Instruction/Examination English Organizational Unit ZAV Module Coordinator Julien Anet Legal Framework The module description is part of the legal basis in addition to the general academic regulations. It is binding. During the first week of the semester a written and communicated supplement can specify the module description in more detail. Module Characteristic Type 3c*** 2 lecture lessons per semester week each yearly starting-class + 2 lab lessons per semester week and class Module Description Students acquire an overview of applied atmospheric physics, with an explicit focus on meteorology. The atim of the course is to apply the basic laws of physics to meteorological problems and phenomena. Students will also be able to generate their own well-founded weather forecast. Module Content Structure of the atmosphere Electromagnetics: Radiation budget, absorption & reflexion Weather observation with satellites & radar Thermodynamics 2: Temperature gradient, Skew-T-log-p-diagram, Psychrometric chart Fluid mechanics 1: Wind systems, aproximations of geostrophic and gradient wind, thermal wind, friction Fluid mechanics 2: Pressure systems, global circulation, rossby waves, jetstream Local wind systems: Mountain- and valley wind systems, sea- and land breeze, european wind systems; turbulence, tropical cyclones and tornadoes Air masses Numerical models: System architecture, potential prob	Module Code	t.BA.AVP.PHYMET-EN.19HS
Instruction/Examination	ECTS Credits	4
Module Coordinator Julien Anet Legal Framework The module description is part of the legal basis in addition to the general academic regulations. It is binding. During the first week of the semester a written and communicated supplement can specify the module description in more detail. Module Characteristic Type 3c*** 2 lecture lessons per semester week each yearly starting-class + 2 lab lessons per semester week and class Module Description Students acquire an overview of applied atmospheric physics, with an explicit focus on meteorology. The aim of the course is to apply the basic laws of physics to meteorological problems and phenomena. Students will also be able to generate their own well-founded weather forecast. Module Content Structure of the atmosphere Electromagnetics: Radiation budget, absorption & reflexion Weather observation with satellites & radar Thermodynamics 1: Humidity measurement techniques, Description and calculation of humidity Thermodynamics 2: Temperature gradient, Skew-T-log-p-diagram, Psychrometric chart Fluid mechanics 1: Wind systems, aproximations of geostrophic and gradient wind, thermal wind, friction Fluid mechanics 2: Pressure systems, global circulation, rossby waves, jetstream Local wind systems; Mountain- and valley wind systems, sea- and land breeze, european wind systems; Wountain- and valley wind systems, sea- and land breeze, european wind systems; Wountain and valley wind systems, sea- and land breeze, european wind systems, trubulence, tr		English
Legal Framework The module description is part of the legal basis in addition to the general academic regulations. It is binding. During the first week of the semester a written and communicated supplement can specify the module description in more detail. Module Characteristic Type 3c*** 2 lecture lessons per semester week each yearly starting-class + 2 lab lessons per semester week and class Module Description Students acquire an overview of applied atmospheric physics, with an explicit focus on meteorology. The aim of the course is to apply the basic laws of physics to meteorological problems and phenomena. Students will also be able to generate their own well-founded weather forecast. Module Content Structure of the atmosphere Electromagnetics: Radiation budget, absorption & reflexion Weather observation with satellites & radar Thermodynamics 1: Humidity measurement techniques, Description and calculation of humidity Thermodynamics 2: Temperature gradient, Skew-T-log-p-diagram, Psychrometric chart Fluid mechanics 1: Wind systems, aproximations of geostrophic and gradient wind, thermal wind, friction Fluid mechanics 2: Pressure systems, global circulation, rossby waves, jetstream Local wind systems: Mountain- and valley wind systems, sea- and land breeze, european wind systems; turbulence, tropical cyclones and formadoes Air masses & fronts: Warm- and cold fronts, occlusions, characteristics of different air masses Numerical models: System architecture, potential problems, types of models, use for the aviation secto	Organizational Unit	ZAV
regulations. It is binding. During the first week of the semester a written and communicated supplement can specify the module description in more detail. Module Characteristic Type 3c*** 2 lecture lessons per semester week each yearly starting-class + 2 lab lessons per semester week and class Module Description Students acquire an overview of applied atmospheric physics, with an explicit focus on meteorology. The aim of the course is to apply the basic laws of physics to meteorological problems and phenomena. Students will also be able to generate their own well-founded weather forecast. Module Content Structure of the atmosphere Electromagnetics: Radiation budget, absorption & reflexion Weather observation with satellites & radar Thermodynamics 1: Humidity measurement techniques, Description and calculation of humidity Thermodynamics 2: Temperature gradient, Skew-T-log-p-diagram, Psychrometric chart Fluid mechanics 1: Wind systems, aproximations of geostrophic and gradient wind, thermal wind, friction Fluid mechanics 2: Pressure systems, global circulation, rossby waves, jetstream Local wind systems: Mountain- and valley wind systems, sea- and land breeze, european wind systems: Mountain- and valley wind systems, sea- and land breeze, european wind systems: Warm- and cold fronts, occlusions, characteristics of different air masses Numerical models: System architecture, potential problems, types of models, use for the aviation sector Meteorological hazards: lcing, turbulence, thunderstorms, downbursts, visibility Aviation emissions: Emission chemistry, environmental aspects Anthropogenic climate change: Climate change over large time scales, future climate	Module Coordinator	Julien Anet
2 lecture lessons per semester week each yearly starting-class + 2 lab lessons per semester week and class Module Description Students acquire an overview of applied atmospheric physics, with an explicit focus on meteorology. The aim of the course is to apply the basic laws of physics to meteorological problems and phenomena. Students will also be able to generate their own well-founded weather forecast. Module Content Structure of the atmosphere Electromagnetics: Radiation budget, absorption & reflexion Weather observation with satellites & radar Thermodynamics 1: Humidity measurement techniques, Description and calculation of humidity Thermodynamics 2: Temperature gradient, Skew-T-log-p-diagram, Psychrometric chart Fluid mechanics 1: Wind systems, aproximations of geostrophic and gradient wind, thermal wind, friction Fluid mechanics 2: Pressure systems, global circulation, rossby waves, jetstream Local wind systems: Mountain- and valley wind systems, sea- and land breeze, european wind systems, turbulence, tropical cyclones and tornadoes Air masses & fronts: Warm- and cold fronts, occlusions, characteristics of different air masses Numerical models: System architecture, potential problems, types of models, use for the aviation sector Meteorological hazards: lcing, turbulence, thunderstorms, downbursts, visibility Aviation emissions: Emission chemistry, environmental aspects	Legal Framework	regulations. It is binding. During the first week of the semester a written and communicated
Week and class Module Description Students acquire an overview of applied atmospheric physics, with an explicit focus on meteorology. The aim of the course is to apply the basic laws of physics to meteorological problems and phenomena. Students will also be able to generate their own well-founded weather forecast. Module Content Structure of the atmosphere Electromagnetics: Radiation budget, absorption & reflexion Weather observation with satellites & radar Thermodynamics 1: Humidity measurement techniques, Description and calculation of humidity Thermodynamics 2: Temperature gradient, Skew-T-log-p-diagram, Psychrometric chart Fluid mechanics 1: Wind systems, aproximations of geostrophic and gradient wind, thermal wind, friction Fluid mechanics 2: Pressure systems, global circulation, rossby waves, jetstream Local wind systems: Mountain- and valley wind systems, sea- and land breeze, european wind systems, turbulence, tropical cyclones and tornadoes Air masses & fronts: Warm- and cold fronts, occlusions, characteristics of different air masses Numerical models: System architecture, potential problems, types of models, use for the aviation sector Meteorological hazards: lcing, turbulence, thunderstorms, downbursts, visibility Aviation emissions: Emission chemistry, environmental aspects	Module Characteristic	Type 3c***
meteorology. The aim of the course is to apply the basic laws of physics to meteorological problems and phenomena. Students will also be able to generate their own well-founded weather forecast. Module Content Structure of the atmosphere Electromagnetics: Radiation budget, absorption & reflexion Weather observation with satellites & radar Thermodynamics 1: Humidity measurement techniques, Description and calculation of humidity Thermodynamics 2: Temperature gradient, Skew-T-log-p-diagram, Psychrometric chart Fluid mechanics 1: Wind systems, aproximations of geostrophic and gradient wind, thermal wind, friction Fluid mechanics 2: Pressure systems, global circulation, rossby waves, jetstream Local wind systems: Mountain- and valley wind systems, sea- and land breeze, european wind systems, turbulence, tropical cyclones and tornadoes Air masses & fronts: Warm- and cold fronts, occlusions, characteristics of different air masses Numerical models: System architecture, potential problems, types of models, use for the aviation sector Meteorological hazards: lcing, turbulence, thunderstorms, downbursts, visibility Aviation emissions: Emission chemistry, environmental aspects Anthropogenic climate change: Climate change over large time scales, future climate		
Electromagnetics: Radiation budget, absorption & reflexion Weather observation with satellites & radar Thermodynamics 1: Humidity measurement techniques, Description and calculation of humidity Thermodynamics 2: Temperature gradient, Skew-T-log-p-diagram, Psychrometric chart Fluid mechanics 1: Wind systems, aproximations of geostrophic and gradient wind, thermal wind, friction Fluid mechanics 2: Pressure systems, global circulation, rossby waves, jetstream Local wind systems: Mountain- and valley wind systems, sea- and land breeze, european wind systems, turbulence, tropical cyclones and tornadoes Air masses & fronts: Warm- and cold fronts, occlusions, characteristics of different air masses Numerical models: System architecture, potential problems, types of models, use for the aviation sector Meteorological hazards: Icing, turbulence, thunderstorms, downbursts, visibility Aviation emissions: Emission chemistry, environmental aspects Anthropogenic climate change: Climate change over large time scales, future climate	Module Description	meteorology. The aim of the course is to apply the basic laws of physics to meteorological problems and phenomena. Students will also be able to generate their own well-founded
 Weather observation with satellites & radar Thermodynamics 1: Humidity measurement techniques, Description and calculation of humidity Thermodynamics 2: Temperature gradient, Skew-T-log-p-diagram, Psychrometric chart Fluid mechanics 1: Wind systems, aproximations of geostrophic and gradient wind, thermal wind, friction Fluid mechanics 2: Pressure systems, global circulation, rossby waves, jetstream Local wind systems: Mountain- and valley wind systems, sea- and land breeze, european wind systems, turbulence, tropical cyclones and tornadoes Air masses & fronts: Warm- and cold fronts, occlusions, characteristics of different air masses Numerical models: System architecture, potential problems, types of models, use for the aviation sector Meteorological hazards: lcing, turbulence, thunderstorms, downbursts, visibility Aviation emissions: Emission chemistry, environmental aspects Anthropogenic climate change: Climate change over large time scales, future climate 	Module Content	Structure of the atmosphere
Thermodynamics 1: Humidity measurement techniques, Description and calculation of humidity Thermodynamics 2: Temperature gradient, Skew-T-log-p-diagram, Psychrometric chart Fluid mechanics 1: Wind systems, aproximations of geostrophic and gradient wind, thermal wind, friction Fluid mechanics 2: Pressure systems, global circulation, rossby waves, jetstream Local wind systems: Mountain- and valley wind systems, sea- and land breeze, european wind systems, turbulence, tropical cyclones and tornadoes Air masses & fronts: Warm- and cold fronts, occlusions, characteristics of different air masses Numerical models: System architecture, potential problems, types of models, use for the aviation sector Meteorological hazards: lcing, turbulence, thunderstorms, downbursts, visibility Aviation emissions: Emission chemistry, environmental aspects Anthropogenic climate change: Climate change over large time scales, future climate		Electromagnetics: Radiation budget, absorption & reflexion
of humidity Thermodynamics 2: Temperature gradient, Skew-T-log-p-diagram, Psychrometric chart Fluid mechanics 1: Wind systems, aproximations of geostrophic and gradient wind, thermal wind, friction Fluid mechanics 2: Pressure systems, global circulation, rossby waves, jetstream Local wind systems: Mountain- and valley wind systems, sea- and land breeze, european wind systems, turbulence, tropical cyclones and tornadoes Air masses & fronts: Warm- and cold fronts, occlusions, characteristics of different air masses Numerical models: System architecture, potential problems, types of models, use for the aviation sector Meteorological hazards: lcing, turbulence, thunderstorms, downbursts, visibility Aviation emissions: Emission chemistry, environmental aspects Anthropogenic climate change: Climate change over large time scales, future climate		Weather observation with satellites & radar
 chart Fluid mechanics 1: Wind systems, aproximations of geostrophic and gradient wind, thermal wind, friction Fluid mechanics 2: Pressure systems, global circulation, rossby waves, jetstream Local wind systems: Mountain- and valley wind systems, sea- and land breeze, european wind systems, turbulence, tropical cyclones and tornadoes Air masses & fronts: Warm- and cold fronts, occlusions, characteristics of different air masses Numerical models: System architecture, potential problems, types of models, use for the aviation sector Meteorological hazards: lcing, turbulence, thunderstorms, downbursts, visibility Aviation emissions: Emission chemistry, environmental aspects Anthropogenic climate change: Climate change over large time scales, future climate 		
 thermal wind, friction Fluid mechanics 2: Pressure systems, global circulation, rossby waves, jetstream Local wind systems: Mountain- and valley wind systems, sea- and land breeze, european wind systems, turbulence, tropical cyclones and tornadoes Air masses & fronts: Warm- and cold fronts, occlusions, characteristics of different air masses Numerical models: System architecture, potential problems, types of models, use for the aviation sector Meteorological hazards: Icing, turbulence, thunderstorms, downbursts, visibility Aviation emissions: Emission chemistry, environmental aspects Anthropogenic climate change: Climate change over large time scales, future climate 		
Local wind systems: Mountain- and valley wind systems, sea- and land breeze, european wind systems, turbulence, tropical cyclones and tornadoes Air masses & fronts: Warm- and cold fronts, occlusions, characteristics of different air masses Numerical models: System architecture, potential problems, types of models, use for the aviation sector Meteorological hazards: Icing, turbulence, thunderstorms, downbursts, visibility Aviation emissions: Emission chemistry, environmental aspects Anthropogenic climate change: Climate change over large time scales, future climate		
european wind systems, turbulence, tropical cyclones and tornadoesAir masses & fronts: Warm- and cold fronts, occlusions, characteristics of different air massesNumerical models: System architecture, potential problems, types of models, use for the aviation sectorMeteorological hazards: lcing, turbulence, thunderstorms, downbursts, visibility Aviation emissions: Emission chemistry, environmental aspects Anthropogenic climate change: Climate change over large time scales, future climate		Fluid mechanics 2: Pressure systems, global circulation, rossby waves, jetstream
massesNumerical models: System architecture, potential problems, types of models, use for the aviation sectorMeteorological hazards: lcing, turbulence, thunderstorms, downbursts, visibility Aviation emissions: Emission chemistry, environmental aspects Anthropogenic climate change: Climate change over large time scales, future climate		
the aviation sector Meteorological hazards: lcing, turbulence, thunderstorms, downbursts, visibility Aviation emissions: Emission chemistry, environmental aspects Anthropogenic climate change: Climate change over large time scales, future climate		
Aviation emissions: Emission chemistry, environmental aspects Anthropogenic climate change: Climate change over large time scales, future climate		
Anthropogenic climate change: Climate change over large time scales, future climate		Meteorological hazards: Icing, turbulence, thunderstorms, downbursts, visibility
		Aviation emissions: Emission chemistry, environmental aspects
		Anthropogenic climate change: Climate change over large time scales, future climate change, influence of human activity, influence of aviation activities
Prerequisite Knowledge Solid qualifications in natural sciences from the assessment year	Prerequisite Knowledge	Solid qualifications in natural sciences from the assessment year

Module description: Physics 3: Atmospheric Physics and Applied Meteorology

Learning Objectives (Competences)	Students	Students			npetencies	Taxonomie
	You can tackle meteorological problems related to atmospheric physics in a targeted manner, carry out research and present your results to a professional audience			SE,	F, M	K6
	You can derive, explain and calculate various meteorological processes using fundamental laws of physics			F, M	, SE	K3, K4
		You can confidently apply your newly acquired meteorological vocabulary in professional life				K1, K2, K3
	You can describe the structure of the atmosphere, the planetary circulation and the human influence on the atmosphere					K1, K2
	for the aviation indus	You can name the most dangerous weather phenomena for the aviation industry and know which information sources are available				K4
		Simple meteorological phenomena can be recognised, analysed and predicted using standard weather charts				K4, K5
Performance Assessment	End-of-module exam	Assessment	Length (min.)	Weightin	g Form	
Performance Assessment		Assessment Grade	-	Weightin 80	g Form acc. to m agreeme	
Performance Assessment	exam	Grade	(min.)		acc. to m	
Performance Assessment	exam written exam Performance asses	Grade	(min.) 90	80 Length	acc. to m agreeme	nt
Classroom Attendance	exam written exam Performance asses the semester	Grade	(min.) 90 Assessment	80 Length (min.)	acc. to m agreeme	Form acc. to module
Performance Assessment Classroom Attendance Requirement Learning material	exam written exam Performance asses the semester written exam	Grade ssment during introduction in atn ZHAW. ISBN 123	(min.) 90 Assessment Grade mospheric scient 4567891002.	80 Length (min.) 45	acc. to m agreeme Weighting 20	Form acc. to module agreement