
Valid from 2024.HS

Module description: Software Engineering 1
Module Code t.BA.IT.SWEN1.19HS

ECTS Credits 4

Language of
Instruction/Examination

German

Organizational Unit InIT

Module Coordinator Kurt Bleisch

Legal Framework The module description is part of the legal basis in addition to the general academic
regulations. It is binding. During the first week of the semester a written and communicated
supplement can specify the module description in more detail.

Module Characteristic Type 2a

4 consecutive lecture lessons per semester week and class

Module Description This module provides you with the necessary analysis and design skills to develop and realize
larger and more complex software applications.User and domain research, use cases and
domain modeling are applied to analyze a problem. The elicited requirements for a software
system are systematically specified and tested. Derived from the requirements, techniques
for the design of a suitable software architecture and the implementation in an object-oriented
design are taught. Proven architecture and design patterns are applied and emphasis is
placed on high software quality (extensibility, maintainability). Standardized notations (such as
UML) are used for modeling and communicating the results from analysis, software
architecture and design.

Module Content This module provides the necessary analysis and design skills to develop and
implement larger and more complex software application.

Analysis competence includes above all the will and ability to communicate and
cooperate with clients and future system users and to quickly familiarize oneself with
new application contexts. Students must be able to recognize familiar problems in the
application context and be familiar with the associated solution patterns. They
recognize inconsistencies and can deal with unclear requirements. Complex domains
can be modelled and large application problems can be broken down into
subproblems using suitable interfaces.

Design competencies include the ability to design hardware and software systems
that fully meet the requirements. Abstraction is as essential as a solid knowledge of
software architecture. Central to the design is the implementation of non-functional
requirements such as security, performance, scalability, maintainability, extensibility
and reliability.

Introduction and Software Development Processes (4 lessons)

Overview of software development process models and their home grounds
(waterfall, iterative-incremental and agile)

Process and artifacts in an iterative-incremental, use-case-driven and architecture-
centric software development process

Requirements Analysis (16 lessons)

Introduction in Usability and UX(contextual inquiry, personas and scenarios, UI
sketching & prototyping)

Elicitation and communication of functional requirements with use cases (UML use
case diagram, use case specification)

Elicitation and communication of non-functional requirements (quality requirements,
constraints)

Modelling of the user's technicality and terms (domain model) and introduction to
Domain Driven Design (DDD, conceptual UML class diagram)

Software Architecture and Design (36 lessons)

Design and modeling of a software architecture (4+1 view, represented by UML
package diagram, UML deployment diagram)

Introduction to Clean Architecture (SOLID principles, layer architecture, onion
architecture)

Use case realization and class design (Responsibility Driven Design (RDD), UML
class diagram, UML sequence diagram, UML communication diagram, UML state
diagram, UML activity diagram)

Design with Design Patterns (GoF: Factory, Singleton, Adaptor, Bridge, Composite,
Decorator, Facade, Proxy, Chain of Responsibility, Observer, State, Strategy, Visitor)

Various in-depth topics such as: Distributed systems, GUI architectures, persistence,
framework design

Practical Training

As a practical training, the students solve exercises tailored to the topic of the lecture.
The practical training is an integral part of the lecture in this module type (2 lessons
lecture and 2 lessons exercises).

Module description: Software Engineering 1

Prerequisite Knowledge -

Learning Objectives
(Competences)

Students... Competencies Taxonomies

You can use standardized notations (such as UML) for
modeling and communicating artifacts in the software
development process.

F, M K3

You can define a software system and systematically
collect and communicate the functional requirements with
use cases as well as quality requirements and constraints.

M, F K3

You can grasp the user's terminology using suitable
procedures and condense it into a domain-specific
terminology (domain model).

M, F K3

Based on the requirements, you can design a suitable
software architecture and an object-oriented design for
the components of the domain logic contained therein.

F, M K3

For a given, iterative-incremental software development
process, you can explain the process and artifacts for
developing an object-oriented software application.

F, M K2

You can use proven analysis, architecture and design
patterns adequately for a problem.

M, F K3, K4

Performance Assessment End-of-module
exam

Assessment Length
(min.)

Weighting Form

written exam Grade 90 70 acc. to module
agreement

Performance assessment during
the semester

Assessment Length
(min.)

Weighting Form

Quiz
Quiz based on MC questions

Grade 15 5 acc. to
module
agreement

Quiz
Quiz based on MC questions

Grade 15 5 acc. to
module
agreement

Evaluated exercises Grade 20 acc. to
module
agreement

Classroom Attendance
Requirement

None

Learning material

Comments

Module description: Software Engineering 1

