Module description: Theory of Computation					
Module Code	t.BA.IT.THIN.19HS				
ECTS Credits	4				
Language of Instruction/Examination	German				
Organizational Unit	CAI				
Module Coordinator	Olaf Stern				
Legal Framework	The module description is part of the legal basis in addition to the general academic regulations. It is binding. During the first week of the semester a written and communicated supplement can specify the module description in more detail.				
Module Characteristic	Туре 2а				
	4 consecutive lecture lessons per semester week and class				
Module Description	Overview: The students will know the basic terms and concepts used in theoretical computer science. They will also understand how to build models with which to assess the performance of current and future computer systems.				
Module Content	Motivation applicable to theoretical computer science:				
	 formal calculation models - ability to recognise fundamental principles, irrespective of the hardware or software being used - the limits applicable to automatic calculations 				
	(1) Formal languages / machine theory:				
	 - fundamental definitions of formal languages - regular languages, finite-state machines (DFSM, NFSM, e-NFSM) - context-independent languages, pushdown automata - (recursive languages), Turing machines (TM) - Chomsky hierarchy 				
	(2) Computability and algorithm concept:				
	 - computable functions. Church's thesis - Equivalence of TMs and computers - Computability and programming languages: GOTO, while and loop programmes - Algorithm concept - Primitive recursion - Non-decidability and decidability: Ld diagonal language, Rice's theorem, busy beavers - Semi-decidable problems: halting problem, game of life, Collatz numbers - Reduction 				
	(3) Complexity theory				
	 Complexity of algorithms - O-notation (omega-notation) - Polynomial and exponential functions - class P, class NP - NP-complete, NP-hard - (Polynomial time reduction) 				
Prerequisite Knowledge	Contents of the module Discrete Mathematics Basic programming skills (any programming language)				

Module description: Theory of Computation								
Learning Objectives	Students			Cor	npetencies	Taxonomies		
(Competences)	(3) The students will know the most important classes of complexity – particularly P and NP – as well as the simple notations used to describe them (o notation and omega notation). They will understand the question of whether P=NP and be aware of its significance. They will be familiar with the polynomial reduction method and be able to apply it to comparatively simple examples.				-	K2, K3		
	(2) The students will be familiar with the major approaches used to formalise concepts of computability and those used to develop algorithms. They will be aware of the equivalences between these various approaches. They will know the concepts of decidable and semidecidable problems and will be aware of the relationship between these two types of problems.				-	К2		
	(1) They will acquire knowledge relating to the formal languages/grammatical systems, the types of automatas which use these and the relationships between them. They will be able to design automatas for given formal languages which will accept or define these languages, as well as design languages which given automatas can recognise and define.				I	K2, K3		
Performance Assessment	End-of-module exam	Assessment	Length (min.)	Weightir	Veighting Form			
	written exam	Grade	90	80	acc. to m agreeme	nodule ent		
	Performance assessment during the semester		Assessment	Length (min.)	Weighting	Form		
	Quizzes, group tasks and presentations		Grade	0	20	acc. to module agreement		
Classroom Attendance Requirement	None 2x during the semester for the group presentations; date according to the lecturer's							
	communication (also possible online to a limited extent by agreement)							
Learning material	 Detailed set of sides, supplementary documents, series of exercises with sample solutions (available on Moodle) John E. Hopcroft, Rajeev Motwani, und Jeffrey D. Ullman: Einführung in die Automatentheorie, Formale Sprachen und Berechenbarkeit, Pearson Studium, Addison- Wesley Verlag, 2011 							
Comments								