Module description: Higher Mathematics for Computer Scientists 1						
Module Code	t.BA.ITM.HM1.19HS					
ECTS Credits	4					
Language of Instruction/Examination	German					
Organizational Unit	IAMP					
Module Coordinator	Reto Knaack					
Legal Framework	The module description is part of the legal basis in addition to the general academic regulations. It is binding. During the first week of the semester a written and communicated supplement can specify the module description in more detail.					
Module Characteristic	Туре За					
	2 lecture lessons per semester week and class+ 2 lab bi-weekly lessons per semester and half-class					
Module Description	Students learn the basics of numerical mathematics for computer scientists and their application with Python, fundamental concepts of computer arithmetic and error estimation, numerical instabilities, algorithms for solving linear equation systems and the computation of eigenvalues and eigenvectors.					
	 Data types Functions Programmes Computer Arithmetic Machine numbers (floating point and fixed point numbers, single-precision, double-precision, IEEE formats) Aproximation and rounding errors Conditioning Numerical solution of one-dimensional nonlinear problems Fixed point iterations Fixed point iterations Fixed point iterations Gauss algorithm with error propagation and pivoting Triangular decomposition of matrices Error calculation and expense estimation Iterative methods: Jacobi / Gauss-Seidel Introduction to complex numbers 					
Prerequisite Knowledge	Analysis 1 & 2 Diskrete Mathematik Lineare Algebra					

Module description: Higher Mathematics for Computer Scientists 1								
Learning Objectives	Students				petencies	Taxonomies		
(Competences)	The students understand the functionality and the basic commands of Python. They are able to use it to write simple scripts and programs to solve typical numerical problems and to implement this in weekly group work. They use the functions provided in Python correctly.), F	K2, K3		
	Students can define the basic concepts of computer arithmetic and correctly apply the associated error estimations. They can explain the possible causes of numerical instabilities.					K2, K3		
	Students can explain the principles of the most important solution methods for nonlinear equations and linear systems of equations and apply them to concrete problems. They can numerically calculate real or complex eigenvalues and eigenvectors.					K2, K3		
Performance Assessment	End-of-module exam	Assessment	Length (min.)	Weighting	Form			
	written exam	Grade	120	80	acc. to m agreeme	odule nt		
	Performance assessment during the semester		Assessment	Length (min.)	Weighting	Form		
	Weekly Assignments		Grade		20	acc. to module agreement		
Classroom Attendance Requirement	None							
Learning material	 Script and Presentations Knorrenschild, M. (2013). Numerische Mathematik: Eine beispielorientierte Einführung. 5 Edition. Carl Hanser Verlag GmbH & Co. KG. ISBN 978-3446432338. 							
Comments								