Module description: Electronics and Digital Technology: Basic Principles

· · · · · · · · · · · · · · · · · · ·						
Module Code	t.BA.ITP.GED.19HS					
ECTS Credits	4					
Language of Instruction/Examination	German					
Organizational Unit	IAMP					
Module Coordinator	Mathias Weyland					
Legal Framework	The module description is part of the legal basis in addition to the general academic regulations. It is binding. During the first week of the semester a written and communicated supplement can specify the module description in more detail.					
Module Characteristic	Туре За					
	2 lecture lessons per semester week and class+ 2 lab bi-weekly lessons per semester and half-class					
Module Description	The course familiarises students with the physical fundamentals of electrical engineering ar computer technology. Besides theoretical knowledge, students will acquire practical skills, such as implementing and analysing electronic circuits.					
Module Content	Fundamentals (charge, force, energy, power, voltage)					
	Current and Resistance (resistance, current, Ohm's Law)					
	Circuits (circuits and Kirchhoff's Circuit Laws)					
	Physical properties of reactive components (inductance, capacitance)					
	Signals in the time- and frequency-domain (amplitude, frequency, bandwidth, qualitative fourier-transforms, spectrum)					
	Reactive components and their role in computer science (step-response, high- and low-pass filters)					
	Semiconductors (Working principles of diodes and transistors, push-pull and open drain output stages)					
	Digital electronics (advantages of digital eoelctronics, logic gates, logic families and their properties, relation to boolean algebra, construction of D-flipflop from logic gates)					
	Electric and magnetic fields					
	Electromagnetic waves (relationship between frequency, wavelength and propagation velocity, refraction, reflection, dispersion, absorption in media (fiber etc.), attenuation, SNR.					
Prerequisite Knowledge	Keine					
	1					

Module description: Electronics and Digital Technology: Basic Principles

earning Objectives	Students	Competencies	Taxonomies
(Competences)	Students are familiar with the physical terms relevant for this class (charge, force, energy, power, voltage, current, resistance, inductance, capacitance) and understand how they relate to computer science.	M, F	К2, К3
	Students are able to analyse circuits according to Kirchhoff's Circuit Laws	M, F	K2, K3, K4
	Students are familiar with common waveforms and can use the corresponding terms (amplitude, frequency, bandwidth) correctly in the time- and in the frequency domain.	M, F	K2, K3
	Students understand the advantages of digital electronics and know the properties of different logic families (in particular supply voltage, efficiency, propagation delays), and understand low logic gates are diesigned from transistors.	M, F	K2, K3
	Students understand the working principles of a D-flipflop and are able to design such flipflops from logic gates.	F, M	K2, K3, K4
	Students are familiar with the fundamentals of electric and magnetic phenomena and understand how they relate to computer science.	F, M	K2, K3
	Students are familiar with the concept of electromagnetic radiation/waves (frequency, wavelength, propagation velocity) and understand the fundamental aspects of the propagation of such waves in media (refraction, reflexion, dispersion, absorption), in particular in optical fibers and network cables.	M, F	K2, K3
	Students are abple to compute attenuation and signal-to- noise-ratio (SNR) in decibels and have an intuition for the decibel scale.	M, F	K2, K3, K4
	Students are able to assess the order of magnitude of physical quantities and the plausibility of their results. Furhtermore, students are familiar with the equipment used in the lab sessions (power supply, multimeter, oscilloscope, function generator) and can use them for simple measurements.	M, SO, F	K1, K2, K3, K4, K5, K6

Module description: Electronics and Digital Technology: Basic Principles

Performance Assessment	End-of-module exam	Assessment	Length (min.)	Weighting	Form				
	written exam	written exam Grade		70	acc. to module agreement				
	Performance asses the semester	Performance assessment during the semester		Length (min.)	Weighting	Form			
	written exam		Grade	15	15	acc. to module agreement			
	report		Grade		15	acc. to module agreement			
Classroom Attendance Requirement	None								
Learning material	 Tipler, P. & Mosca, G. (2014). Physik: für Wissenschaftler und Ingenieure. 7 Edition. Heidelberg, Deutschland: Springer Spektrum. ISBN 978-3827419453. eBook is available in the ZHAW library. Slides and lecture notes 								
Comments									