Module description: Physics 3: Kinematics and Kinetics **Module Code** t.BA.MTP.PHY3.19HS **ECTS Credits** Language of German Instruction/Examination **Organizational Unit IMES Module Coordinator** Robert Eberlein The module description is part of the legal basis in addition to the general academic **Legal Framework** regulations. It is binding. During the first week of the semester a written and communicated supplement can specify the module description in more detail. **Module Characteristic** Type 2a 4 consecutive lecture lessons per semester week and class The prime objective of this module is the transfer of engineering knowledge on engineering **Module Description** dynamics. Special emphasis is placed on the transfer of theoretical know-how to engineering applications.

Module description: Physics 3: Kinematics and Kinetics

Module Content

Motion of a point mass: Kinematics

- Repetition of rectilinear motion
- · Basic tasks in point mass kinematics
- Three-dimensional motion
- · Fixed cartsian coordinates
- · Cylindric coordinates
- Frenet-Serret frame
- Exercises

Motion of a point mass: Kinetics

- · 2. Newtonian principle in 3D coordinate systems
- Repetition free motion
- · Repetition constrained motion
- Resistance forces
- Repetition work-energy theorem, conservation of energy
- Exercises

Motion of a point mass: Non-inertial reference frames

- Translation as relative motion
- · Velocities in a rotating system
- · Accelerations in a rotating system
- · Forces in a rotating system
- Exercices

Dynamics of systems of point masses

- Fundamentals
- Principle of linear momentum
- Principle of angular momentum
- Exercises

Dynamics of rigid bodies

- · Rotation about a fixed axis
- · Mass moment of inertia
- Principle of angular momentum
- Kinetics in plane motion (center of gravity versus fixed point in space)
- Work-energy theorem, conservation of energy
- · Aspects of kinematics, instantaneous center of rotation
- Exercises

Kinetics of rigid bodies in three-dimensional motion

- Principles of linear and angular momentum
- Inertia tensor and Eularian equations
- Support reaction in plane motion
- Exercises

Prerequisite Knowledge

Physics 1, analysis 1 & 2, algebra und statistics 1 & 2, statics

Module description: Physics 3: Kinematics and Kinetics							
Learning Objectives	Students			С	Competencies		Taxonomies
(Competences)	Knowledge of fundamentals in kinematics and kinetics of point masses				F		КЗ
	Knowledge of fundamentals in point mass and rigid body systems				F		КЗ
	Modeling and analyzing of point masses with non-inertial reference frames				F, M		K3, K4
	Analytical solutions for point mass systems in engineering applications				M, F		K3, K4
	Analytical solutions for rigid body sysmtems in engineering applications				M, F		K3, K4
	Numerical simulation of 2D and 3D rigid body systems				М		K2
Performance Assessment	End-of-module exam	Assessment	Length (min.)	Weigh	nting	Form	
	written exam	Grade	90	80		acc. to module agreement	
							_
	Performance assessment during the semester		Assessment	Length (min.)		Veighting	Form
	written exam		Grade	45 2		20	acc. to module agreement
Classroom Attendance Requirement	None						
Learning material							
Comments	Deviations from the proof of performance during the lesson can be made if the lecturer announces this in writing in a module agreement during the first week of the study semester.						