Module description: Analysis 2					
Module Code	t.BA.XXM4.AN2.19HS				
ECTS Credits	4				
Language of Instruction/Examination	German				
Organizational Unit	IAMP				
Module Coordinator	Marcello Robbiani				
Legal Framework	The module description is part of the legal basis in addition to the general academic regulations. It is binding. During the first week of the semester a written and communicated supplement can specify the module description in more detail.				
Module Characteristic	Туре За				
	2 lecture lessons per semester week and class+ 2 lab bi-weekly lessons per semester and half-class				
Module Description	Advanced calculus				
Module Content	Elementary functions				
	 power and root functions, exponential and logarithmic functions trigonometric and hyperbolic functions and their inverses elementary theory of oscillations 				
	Differential calculus in one real variable				
	 derivation rules and methods applications of differential calculus - extremal problems power series, Taylor polynomials and series 				
	Introduction to differential equations				
	Integral calculus in one real variable				
	 definite and indefinite integral fundamental theorem of calculus rules and methods of integration, improper integrals applications of integral calculus in geometry, science and technology 				
Prerequisite Knowledge	module Analysis I				

Module description: Analysis 2

Learning Objectives	Students				Competencies		Taxonomies		
(competences)	You know the fundamental concepts of differential and integral calculus. In particular you know the central role of the fundamental theorem of calculus. You are able to calculate derivatives and to apply them among others to the solution of extremal problems. You are able to use integration methods to calculate definite and indefinite integrals. You are able to apply integrals in geometry, science and technology.				M, F		K2, K3		
	You know the concept of a differential equation and the corresponding vocabulary. You know the concept of the solution to a differential equation.						K2, K3		
	You know the basical elements of functional though and are able to translate it in applications on exponential and logarithmical functions on hyperbolic functions and on area functions, on trigonometric functions and on arcus functions. In particular you know the role of the trigonometric additions theorems for the analysis of oscillations.						K2, K3		
	You know the consept of the approximation of functions by Taylor polynomials and are able to estimate the approximation error. You are able to develop analytical functions in Taylor series				F, M		K2, K3		
Performance Assessment	End-of-module exam	Assessment	Length (min.)	Wei	ghting Form				
	written exam	Grade	90	80	acc. to m agreeme		odule nt		
	Performance assessment during the semester		Assessment	Length Weigh (min.)		Weighting	Form		
	at least one assessment		Grade			20	acc. to module agreement		
Classroom Attendance Requirement	None								
Learning material	 Papula, L. (2018). Mathematik f ür Ingenieure und Naturwissenschaftler. 15 Edition. Wiesbaden: Springer. ISBN 978-3-658-21745-7. 								
Comments									