Module description: Analysis 3					
Module Code	t.BA.XXM5.AN3.19HS				
ECTS Credits	4				
Language of Instruction/Examination	German				
Organizational Unit	ICP				
Module Coordinator	Christoph Kirsch				
Legal Framework	The module description is part of the legal basis in addition to the general academic regulations. It is binding. During the first week of the semester a written and communicated supplement can specify the module description in more detail.				
Module Characteristic	Туре За				
	2 lecture lessons per semester week and class+ 2 lab bi-weekly lessons per semester and half-class				
Module Description	The main topic of this module is the differential and integral calculus of generally vector-valued functions of several real variables. In addition, students are introduced to the (continuous) Fourier transform and learn about analytical methods for the solution of ordinary differential equations.				
Module Content	(Continuous) Fourier transform				
	 definitions, tables Fourier series for periodic functions Functions of several variables 				
	 definition and visualization continuity, differentiability partial derivatives, differential operators integral calculus, coordinate transforms divergence theorem, Stokes' theorem, balance equations, scalar potentials for gradient fields 				
	Ordinary differential equations				
	 slope field and integral curves of ordinary differential equations substitution methods for special first order ordinary differential equations solution of systems of linear ordinary differential equations 				
Prerequisite Knowledge	XXM4.AN1, XXM4.AN2, XXM5.LA1, XXM5.LA2				

Module description: Analysis 3

Learning Objectives (Competences)	Students			Com	petencies	Taxonomies	
	You know properties such as continuity and differentiability of functions of several variables, and you can visualize these functions appropriately.					K2, K3	
	You can rewrite arbitrary higher order ordinary differential equations as systems of first order ordinary differential equations.					K2, K3	
	You can formulate balance equations for the state variables of a physical system using the divergence theorem, and you can compute scalar potentials for gradient fields using Stokes' theorem.					K2, K3	
	You can compute partial derivatives of functions. You know the calculation rules for the differential operators gradient, divergence and curl and you can use them on examples.					K2, K3	
	You know the method of substitution for the solution of special first order ordinary differential equations, and you can use this method on examples.					K2, K3	
	You can solve systems of linear first order ordinary differential equations analytically.					K2, K3	
	You can compute Fourier transforms of functions in both directions with the help of tables. You can calculate Fourier series of periodic functions.					K2, K3	
	You know the slope field of a first order ordinary differential equation, and you can derive qualitative properties of the integral curves from it.					K2, K3	
	You know various definitions of the (continuous) Fourier transform, and you can work with tables of Fourier transform pairs.					K2, K3	
	You can integrate functions of several variables over general domains, and you can transform such integrals into arbitrary coordinates.					K2, K3	
	End-of-module Assessment Length (min.) Wei			Weighting	g Form		
	written exam	Grade	90	80	acc. to m agreeme		
	Performance assessment during the semester		Assessment	Length (min.)	Weighting	Form	
			Grade		20	acc. to module agreement	
Classroom Attendance Requirement	None						
earning material							
Comments	At least one graded as						